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I. Inhoduction I

The earth is inhomogeneous on a wide range of scales and a variety of methods have been

developed in seismology for analyzing the effects of these inhomogeneities. The theory of wave

scattering, as developed in the fields of optics and acoustics, has been adapted to the case of elastic

waves and has been quite useful in studying certain types of these inhomogeneities. For instance, Aki

(1973) used scattering theory to study the phase and amplitude fluctuations of waves ariving at a

seismic array, Haddon and Cleary (1974) interpreted the precursors to PKIKP as due to scattering near

the mantle-core boundary, Aki (1969) attributed the coda waves from local earthquakes to scattering in

the lithosphere, and Aki (1980) considered the role of scattering in the attenuation of waves. In parallel

with these applications of scattering, the necessary extensions in the theory of elastic wave scattering

were also developed. Komeev and Johnson (1993a, 1993b) discuss the background for both the exact

and approximate theoretical developments in this area. Of particular interest to the subject of this paper

are the excellent studies by Wu and Aki (1985a, 1985b).

The full treatment of elastic wave scattering is not a simple task, and most seismological studies

have employed various approximations in their use of scattering theory. These include the assumption

of only one type of wave (acoustic approximation), the assumption of a low contrast in material proper-

ties (Born approximation), and the assumption of low frequencies (Rayleigh approximation). While

these approximations appear to be reasonable in many cases, a rigorous justification of their use is

difficult. One method of checking the validity of the approximations is k) compare them with exact

analytical solutions. The purpose of this paper is to develop and discuss the poperties of one such

solution, the scattering of plane P waves and S waves by a spherical inclusion.

A spherical inclusion is the most convenient choice as a test model for comparison with approxi-

mate solutions. It is one of the few objects for which the scattering problem has an exact and computa-

tionally tractable solution, and it .ts the desirable property of being describable by a minimum number



of parnmeters. The treatment of the canonical scattering problem for the sphere has a long history. For

light scattering it was formulated by Mie (1908) in terms of a series of spherical harmonifs and a

comprensive discussion of this topic can be found in Van der Hulst (1957). Elastic scattering by

spherical obstacles has also been the subject of many publications, with some authors using potentials in

their approach to the problem (Ying and Truell, 1956; TrueD et. al., 1969;, Yamakawa, 1962; Nigul eL

al., 1974; Morochnik, 1983a, 1983b) and others using displacements (Petmrsen, 1946, 1950a, 1950b,

1953; Korneev and Petrashen, 1987). The present paper follows this latter approach and a detailed

treatment of the analytical and numerical aspects of the scattering problem for P waves incident upon a

spherical inclusion can be found in Korneev and Johnson (1993a), with a discussion of variows approxi-

mate solutions in Korneev and Johnson (l09)3b). These results are extended in the present paper to the

case of an incident S wave so that comparisons can be made between the relative scattering of P waves

and S waves by various types of spherical inclusions.

2. Statement of the problem

Consider a two-parn isotropic medium consisting of a spherically symmetric inclusion V, ( part

v = 1 ) with radius r = R having elastic panuneters X, = XI(r) , pt = It,(r) and density p, = pl(r)

which is embedded in a homogeneous elastic surrounding medium (part v = 2 ) having elastic parame-

tes X = )-2 , A t= 2 and density P = P2. The inclusion V, may contain a number of internal shells

which are bounded by spherical interfaces where the material properties or their spatial derivatives we

radially discontinuous. The boundary conditions on such interfaces as well as those at the surface

r = R are linear and homogeneous. We assume that all elastic displacement fields under conideration

have harmonic time dependence of the form ei'v where co is the angular frequency. Joint Cartesian

(x,y,z) and spherical I r.0,) coordinate systems with the origin at the center of the inclusion will be

used.

Incident from medium v = 2 is a harmonic disturbance with a displacement field given by

UO = Uo (x,y,z) euv (2.1)

The interaction of this incident wave with the inclusion gives rise to additional displacement fields both

inside and outside the inclusion, and these are denoted by

U, = U,(x,y,z) , (v= 1,2) (2.2)

Since we will be primarily interested in the properties of the additional disturbance outside the inclu-

sion, this field with subscript 2 will be referred to as the scattered field U, a U2 . Thus, the total field
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U in the outer medium v = 2 is a sum of the incident wave and scattered field

U = UO + U- (2.3)

The field U. as well as both of iL% individual components, must satisfy the equation of motion for a

homoigeneous isotropic elastic medium.

(1+2pi) V2U - p VxVxU + pow2U = 0 (2.4)

The equation of motion in any spherical shell within the inclusion has the form

().=+2t,) V2U, - P, VxVxU, + . V. U, t

+2 (44 ±- + -f x Vx U-1 + pIM2U, = 0 (2.5)
ar iar ar

We denote the veklcities of the compressitmal and shear waves by

= ( Pv ., VS1V' = (2.6)

We require that the scattered field satisfy a radiation ctditkin at large distances from the inclusion

, A,, (9,*) , a, (o,*)
- e + . , (A 0--# am) (2.7)

r r

where kP = W/V•2) 'rd k, = w/V,( . The functions A,. (0,*) and A, (0,*) will be referred to as scatter-

ing diagrams of compressional and shear waves, respictively.

3. Spherical vectors

The solution will he developed using the spherical vector system of Petrashen (1945, 1949). A

fairly complete description of this system can be found in Korneev and Johnson (1993a), so only the

essential elements of the system will he listed here. The basis vectors for the system are

y Y(,(O,*) = r x VYIm(O,,)

Yb - Y+ (0,$) = (I+1) F Y)'. (e,.) - r VY), (0,#) (3.1)

YT. - YT.,(0,) = I F Y1,,(e,$) + r V) (0,$)

with the usual definition of the spherical harmonic functions

YL(0,#) = es" Pt(Co.rO) , I Z 0 , (-1 < in S !)

The vectors of this system are linearly independent at any point (0,*) on a spherical surface. For I = 0
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only the one vector Y;o a is no•nzer.

In the space of vector functions 0(0,0) defined on the spherical surface al

O:5 O . Ox 0 $2# . dfl - sinO dO d#

the basis vectors satisfy the orthogonality relaion

Y*.4(') *Y,"" d52=[:)Q26g6,m (3.2)

whea the normalizing coefficients are given by the expressions

V= 4i l(1+ 1) (1 T My

c• x( !_l~ ) 
(3.3)

V = -1 " TI + -in

For vector functions f(O,40) with a finite norn

2 A P12 d -d <.

the system of spherical vectors (3.1) is complete in the sense of convergence in the mean for a general-

ized Fourier series expansion of f(0,ý)
-

t

f(e.) = E • Z a,(")YY)({,.) (3.4)
OW).÷.- ISO mS-4

where

a = L( [ Y . f dD (3.5)

Using the completeness of the vector system (3.1), we can seek a solution of our scattering prob-

lem in a form of a series

U(r,O.,) = Y d.,!," WL,)(r) YVj(O.,) (36)

Because of the spherical symmetry of the present problem, the 3-D scattering problem is reduced to a

I-D boundary problem which must be solved for the radial functions VjL,(r). If the field U is known

on amy spherical surface r = consa•nt, then the expansion coefficients of (3.6) can be detmmined using

the orthogonality of the splherical vectors
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djy.) Wk.)(r) = Y(c6(L)]'IY•)(e,).U(r,e.#) dl (3.7)

4. Baskc expressiens

In the case of elastic wave propagation in a medium with spherical symmetry a critical element is

the traction vector on a surface r = constant, which has the form

t4(U) = V. U f + 2,u au + g(F x ×Vx U] (4.1)

If the field U is taken to have the form (3.6), then the corresponding traction vector has the form

t, (U) = :z T(')(r) Yg)(O,#) (4.2)
ra~m

where the expansion coefficients are given by

T,.(r) = d,." j ar rJ (4.3)

To,(r) = d(, . X+ 2g)f.-- + 2 J - 4g-W-!. (4.4a)

T (r)= 2i+ I [ + 1+(31 +2 2)t--t + (1 +2)+1 +)-1

+ 21d+1 + (A- 1) (4.4b)

Tr,(r) = d,[+, U + 1AO 2 + A) +,,2)

21+ 1 [r 1r 1L)
++3+ . T + (I1-((+)PLl. - !j(45

Note that the coefficient db',) remains coupled with the same vector Yr)(B,#) in the expressions for both

the displacement (3.6) and the traction (4.2). Differential equations for the radial functions iv:(r) can

be obtained by substituting (3.6) into (2.5) and using the othogonality of the spherical vectors. Solu-

tions in the form of power %cries for the general case can be found in Korneev (1983), but in this paper

the emphasis will be on the special case of a homogeneous sphere.

In the dynamic theory of ea'tsticity it is useful to consider displacement field as a sum of potential

(P) and solenoidal (S) fields



U = Up + US (4.6)

which satisfy the conditions

VxUp 0 0, V'US .0 (4.7)

amd replesent compressional and .shear waves, respectively. Since V -v(r)YO,(O,#) a 0 and

V x w(r)Yw* 0 die fields (4.6) have the form

Up= • .{F ,(r) Y*, +FL,(r)YT.,} (4.8)

US fb-'_{ •(r)Y" +fj,(r)Y+ +f 2 (r)Y;,} (4.9)

where for I k I the radial functions must satisfy the equations

S(1 -1) ( 1 + 2 )f - = 0 (4.10)

r ar r

0I - 1) + (1+ 1) + (I= 0, (4.11)
' rJ j I ar =J

In the case of a homogeneous isotn)pic elastic medium the displacement field U must satisfy the

equation of motion (2.4). Substituting the expressions (4.8) and (4.9) into (2.4) and using the ortho-

gcOality of the spheriali vectors, one obhtins differential equations of the second order for the radial

functions. Thes equations have generd solutions of the form

F,(r) = al+jl,(, ,,r) +

FL;(r) = (I (r) + ah,_,(ker)

fl(r) = b•+j,+i(k~r) + bh+h,+,.(kr) (4.12)

fj;(r) = bLj.-j.(k,r) + b.-h,..(k~r)

f/.(r) c'j,("5r) + c,•'h,(k.r)

The solutions here have been constructed as a linear combination of two independent solutions, the

spherical Bessel functions j, (kr) and the spherical Hankel functions of the second kind h. (kr). Fields

which are regular at the origin will conltdn only the spherical Bessel functions, whereas secondary scat-

tered fields which must satisfy the radiation conditions of the form (2.7) when r -+ @ will contain only

the Hankel functions. The differential equations (4.10) and (4.11) in this case reduce to

aX = a,. (I + l)b,,v = Ib . (v = 1,2) (4.13)

6



We assume that the incident wave U,, is regular at the origin so the radial functions of this wave

will contain only the spherical Bessel functions. Thus the general case for the incident field Uo is given

by the expression

U10  cL.Oj,(kr)Y. + [ab~j,.(kpr) + lbL.jj+j(kr

+ [-ai.J.-I (kpr) + (0+l)i.ji..I(ksr)]YT } (4.14)

with arbitrary coefficients al or the P disturbance and coefficients bo , co for the S disturbance.

Introducing a set of "canonical" incident waves defined as

P1. jj+.(klr)Y+,,(O.$) - (kl, r)Y,(0,*)

SVI, = Ijl+](kL r)Y+,(O,0) + (l+l)j,_.(k~r)Y,,(0,ý) (4.15)

SHI, = j, (k-, r)Y," (0,)

we can represent (4.14) as the linear combination

Uo = ,, I= a1 P, , + bl,.,SVi. + clSi1,,, } (4.16)

Each of the waves of (4.15) satisfies the equation of motion (2.4). The wave P1,, Ls a pure compres-

sional wave and SVi,,, and SHI,, waves are both shear waves.

Now consider the incidence of canonical waves of the form (4.16) on the inclusion V, . Substitu-

tion of the field U, having the form (3.6) into the equation of motion (2.5) leads to a separate set of

differential equations for radial functions for any pair of indices I ,m. Moreover, the equation for deter-

mining %), (r) separates from those for Wl*, (r) and % (r). Also note that and azimuth index m is not

present in any of the coclficients of the differential equations. The boundary conditions (n the surface

r = R of the inclusion are required ito be linear and homogeneous. For a welded elastic-elastic inter-

face they have the form

U, = U,, + U=. and t.9{U,] = tr )[U( + U'] (4.17)

with the usual modifications for elastic-fluid and elastic-free interfaces. Again, because of the ortho-

gonality of vectors (3. ), separate boundary equations may be obtained fir any pair of indices 1,m, and

in the present problem these equations do not depend upon the index m. The canonical field P 1. will

7



excite in the medium v = 2 a scattered field of the form

=[affh +I.(k. r ) + Ibf'she, +I(k. r ) h + [-ajPPhu..,kir) + (I+1)bhi-h..(k~r )] Yý. (4.18)

"The canonical field SV•, will excite in the medium v = 2 a scattered field

=N [asPhl+uezpr) + 1blahl,,(k~r )]Yij. + [-a~h1 (k~r + (L+1)bFsha...(k~r )] Y. (4.19)

and the field SHW, will excite in the medium v = 2 the scattered field

UN = cihu(kArV)Y". (4.20)

The set of coefficients a1Pl, be , b/'5 , ci' which are contained in these expMeaM4ios will be called

the canonical .cattering coefficients for the inclusion V,. They may be found a% solutions of linear

systems following substitution of the relevant exprissi( ) the boundary conditions and using the

orthogonality of the spherical vectors. Arnlyticid formula% for these canonical scattering coefficient% for

the the case of a homogeneous elastic spherical inclusion, as well as for the special cases of a fluid

filled spherical inclusion and a spherical aavity, are given in Appendix A. These will be discussed in

more detail Later.

Once the cmaonical s.uttering coeflicients are known, an incident field (4.16) specified by the

coefficient,; a , , c ', will generate a •c•attered field which can be written as

U,., = cb{ , cj'h, (k. r)YI.,

+ [[,,i.,' ,,,+ b,.(a ) h,, (k,, r. ) + labP + b"b, )h,+i(&.r)]YZ.

"+ al + b[-,ZaiJ.(kr ) + (l+l)(a11 b,; + bbiSb• hl-.(k.r)] Y,; (4.21)

This represents the complete solution for the s•catered field from a spherical inclusion for an arbitrary

incident wave.

The field U, inside of the sphere will have the general form of (3.6) and will be linearly depen-

dent upon the source cex:ficicnts ait, , b1,,, . c:,,. For the special case of a homogeneous istropic

material inside the inclusion, U, has the the sune form as (4.21) with all of the functiotns hk replaoed

by the corresponding functions A and with a new set of canonical coefficients for the inner medium

v = I (r < R) . For the sake or completeness, andytical expressions for this internal set of canonical

coefficients for the cases or clastic and fluid spheres can be found in Appendix B. However, throughout

8



the remainder of this piaper only the scattered field outside of the inclusion will be considered.

One method of de g the coeficients a,, b ,, and c,, of the incident wave is to use (3.7)

and integrate the product of the incident field U1 with the corresponding spherical vector. Thus, for the

case of a plane P wave propagating in the direction of the positive z axis

U0 = e 2 (4.22)

and

-i-Q4Il) .(

at=, 2  8 ,.U, , , = 0 , = 0 (4.23)

For an incident plane S waves propagating in the direction of the positive z axis and polarized along the

x axis

U('= e-&z f, (4.24)

and

2a• 0 b" I (~~. •-g,.
, I 1, = 21(1+1) "

¢•= 21+1 (r i),o ] -,,. ' e (4.25)21(+1)
C11 21(1+1) 1I(1 ),i + 8"'.1 e (425

For a point pressure source located at the point R1 = (zo,0,0) where z(, > R

-ik,, Ir-Itl
U= -V Ir-R, (4.26)

and

a,.= -ik,2 hi(kaZO)5A,. , b, = 0 , cL, = 0 (4.27)

The scattered field (4.21), expressed in terms of spherical unit vectors (i%,,), for the cases of the

incident plane P wave (4.22) and the incident plane S wave (4.24) are given in Appendix C.

The convergence of die series (4.21) depends upon the observation distance r, the canonical

scattering coefficients, aiud the coefficients of the incident field, and each combination of these variables

may require a special investigation. The bisic problem is to estimate the number of terms that should

be included in the series in order to achieve a certain level of accuracy. One general guideline is that

the number of tenms which are nccessary in order to represent the incident wave on the surface of the

inclusion at the desired accuracy is a good estimate of the number of terms required in the solution

series. Korneev and Johnson (1993a) considered this problem for the scattering of a plane P wave and

9)



showed that the necessUy number of terms in the serie could be estimated by the formula

= eR + N (4.28)2

where R is the radius of the sphere and N is a constant. A value of N = 15 is sufficient to give an

accuracy of 10".

S. Flow of the scattered energy

A useful method of chasucterizing the scattering by an object is to calculate the energy of the

scattered waves and compare it to the energy of the incident wave. Various forms of this ratio between

the scattered and incident energies are called scattering cross sections. The energy of the scattered

waves can be obtained by calculating the energy flux of scattered waves through a surface S that com-

pletely surrounds the object. Noting that the energy flux through a surface element ds having a normal

n is given by (U • t. [UJ) and that the energy flux averaged over one period is o Im(U t,,41U])/2. then

the total energy flux per period through the surface S is given by

F = •-- nI(U. t,[UJ)dIV (5.1)

where (*) denotes the complex conjugate.

Substituting the total field (2.3) into (5.1) and assuming conservation of energy (no energy

absorption by the material), we obtain

F = F,,. +2F, = Im ln(U,. t:[U,. 1) ds + 0 m (U,,. t,[U(J]) ds = 0 (5.2)

where F5, is the total energy flow of the scattered field and F, describes the energy of coherent interac-

tion between the scattered field U=. and the incident field U0 . Physically, the phenomena of scattering

describes the conversion of part of the energy of the primary incident wave into the energy of the

secondary scattered waves. Therefore, after the incident wave has interacted with the inclusion, it

should have lost prar of its energy. However, the finmna solution (2.3) leaves the incident wave undis-

turbed. This means that the additional field U, of (2.3) must include both the change in the primary

wave along with the secondary scattered waves. We will return to this problem later when considering

the scattering cross-sections of elastic spheres.

To calculate the energy flow F.- of the scattered field (4.21) caused by the incident field (4.16)

we need expressions for the tractions associated with both of these fields. Since total energy flow does

10



rot depend from the shape of the surface S, we let S be a spherical surface of radius r, which is arbi-

trary so long as the inclusion is contained inside S. The traction vector t,(U,,) of the field U,, on this

surface has the fonr

t,(Ur) = ICIY. a, + a,' ) ]A,++ Iaa bf5 + b,'biv )8,] Y+

+ [tma + b.,aI)A- -(0+1+) (ahom brs + bw ,-bi) Bi] Y;. (5.3)

where

C,= r.h_(k.r)- (1+2) h,(k.r)] (5.4)

A1+ R [ r (1+2) h,+_(kr) J

BI+ = [r h,(kr) - 2 f (1-1) h,(kr) 
(5.6)

The traction vector for the incidence field (4.16) can be obtained from (5.3) by setting all canonical

scattering coeflicients cquad to one and by substituting for all spherical Hankel functions the

corresponding Bessel function in (5.4)-(5.6).

After making all of the necessary substitutions in (5.2), performing the integration over S, and

some tedious manipulations, we obtain

F4,, = F ;

= 2n04 + 2 J)VI, X(21 + 1)(1 + )! a +a ) + b,(,a-PI
I j,, ""I -: I'l]

+ 21t(X+2)V, J(2 1 + 'n)! 1 (I +I W.. (5a)
I (I - m) 1(21 + 1)+

which can also be expressed as

= - 2g(X + 2 2 1 +1) la(,12 Re(ap}) + Refaj,:bL.a })F,• = -2x(L+2p)V,(1-+!)in-)!

+ I(/ + 1W 1C0,12 Refciv) + I1," 12Re(I•v}) + Re(a,• .,,b,•b) (5.7b)C (21 + I)' _j

This is an exact result. The part F,. corresponds to the energy flow of the scaitered P waves and the

il



part F, corresponds to the energy flow of the scattered S waves. As can seen, the combined incidence

of both P and S waves on the inclusion can atue constructive or destructive interference in the sct-

tered field.

The equation (5.7) must be true for any set of coefficients for the incident wave (4.16), which

leads to the following four independent relations between the canonical scattering coefficients

1cf51 = -Rc(ci}) (5.8)

lalf'9 2 + I(/ + l)'1Ib/5I 2 = -Re(a{P) (5.9)

IalfP + I(/ + 11)lul? = -1(1 + l)yRebj,5) (5.10)

2[aPPa,"'P + I(/ + )b,[ j = -a,,P - 1(I + I)W'lb" (5.11)

Multiplying (5.11) first by alw and then by bV". and eliminating the quantity ajsb/'s lekas to the expres-

sion

I spi I PI .2. ,2haXi, .. S
Sa, 1 + 2i, = .12( + ! tj OIV jI +

Using the equivalences (5.9) and (5. 10), this equation reduces to2 I
JafPj = + I) (5.12)

The equivalcnces (5.8)45.10) will be used in the next section in formulating optical theorems. The

last equivalence (5.12) will be used later when considering the relation between P -+ S and S -+ P

scattering. The equivadences (5.8)-(5.12) are also useful in verifying the accuracy of numerical calcula-

tions.

It is worth noting that the result (5.7) would also have been obtained if the radial functions had

been reduced to their far field asymptotic expressions before Substituting into (5.2). This means that the

net energy flux due to the near-lield temns in the solution is zero. However, as shown by Korneev and

Johnson (1993a), these near-field tenrs can significanily affect the displacement field formed in the

vicinity of the inclusion.

6. Scattering cro.s-sections and optical theorems

Here we consider the special ca.ses of an incident field consisting of either a plane P wave or a

plane S wave. Earlier we obtained the coefficients (4.23) and (4.25) which represent these waves in

terms of the sphericd vectors (3. 1). Now we introduce the scattering croms-section a as the ratio

12



0 = F, (6.1)F0I

which is the energy flow F,, of the scattered field normalized by the energy flow Fo of the incident

wave per unit area normal to the direction of Iranqgation.

We begin with the case of the incident plane P wave (4.23). For this wave the energy flow per

unit area of the incident wave is

Fo = (X+ 2pkL&2W (6.2)

Substituting coefficients (4.23) into (5.7) we get the scattering cross-section

OP F.P Opp + S- •

4x (21 + 1) aP + M(1 + i-y1 IbPII (6.3a)
4.P2 I1a

= -' (21 + 1) Re(aP}) (6.3b)

On the other hand, putting the coefficients (4.23) into the expression (4.21) for the scattered field and

using the asymptotic representation

if

' -i( - -(1+1))
hiZ)= -e 2 . (z :1 )

for the spheriiad I lankel functions, we obtain for 0 = 0

-ik~r

U•(O) = A i0 P r (6.4)
r

where

A_(0) =(21 + 1) aPP (6.5)

Comparing (6.3) and (6.5) we have the equation

O 4n lm(Ap(0)) (6.6)

which is the optical theorem for an incident pliue P wave. This equation establishes a connection

between the smittcring cross-section and the amplitude of the scattered field in the forward direction.

13



For an incident plane S wave (4.25) the procedure for obtaining an optical theoriem is ianilr.

The energy flow per unit area of the incident S wave is

S(6.7)

Then, using the coefficients (4.25) in (5.7) we have

2 (21+ 1) + 2 (2 + 11 S1 + C (6.8.)

S(21 + 1) Re h "j' + c' (6.8b)k--" -- .2 lta

The forward scattered shear wave in the fair field hmL% a fomn
-ik, r

U~s(O) = As(O)e " I (6.9)r

where

As(0) = - (21 + I) (ivy+ t] (6.10)

Comparing (6.8) and (6.10) we have

= -±- Irm(A.(0) (6.11)

which is the opticdl theorem for an incident plane S wave. Optical theorems such as this and (6.6) can

be useful in studying the attenuation of waves due to sattering.

7. Comparison of P -. + S and S -+ P scattering

The equivalence (5.12) allows one to compare st,-attering of converted waves for the same

scatterer. Applying (5.12) to (6.3a) and (6.8a) we see that the scattering cross-sections for converted

waves are connected by the simple relation

-= 2-o" (7.1)

This equation says that the scaltering cross-section of P -+ S converted waves is significantly larger

than that for S -+ P converted waves. This result is valid for any spherically symmetric scatterer.

14



In practice one deals with the amplitudes of scattered waves, and so it is useful to also estimate

the mean intensity (squared amnplitude) of the field. 0sing the far field approximation, the mean inten-

sity of the scattered held for an incident plane P wave has the form

I = I JUI uw df

2 2  (21 + 1) I "PI + I(/ + I)-? Ib:NI

xr 2
OPP 

aPS 
P

where the integration is taken over a spherical surface at the radius r > R in the far field zone. Simi-

larly, for an incident plane S wave we have

= 4 -r2 + r I .p + . 2 ((2. + ))(IbI + 1c3

Using the equivalence (5.12). we have Ibr the ratio of the mt.nm conversion intensities

IJS 1 oe'S 2 (X + 2=)2i = -, - 2 ., •(7.4)
-I -

Thus, if the comnpauron is made between the intensities of the waves rather than the energy flux of

(7.1), the asymmetry in the average conversion between P and S waves by scattering is even larger.

Note that this is a gencral result tha k Ids for all frequencies. For the "typical" seismic situation where

y = !/Nq, the ratio (7.4) is equal to 18. For soft media, where I Li even smaller in a relative sense, this

ratio could be signilicantly larger.

For the case of homogeneous spherical inclusion (elastic, fluid, or cavity), an even stronger result

can be obtained which involves m) spltial averaging. First note that the convened far field for the

incident plane P wave (4.22) is easily obtained from (C. I) and Ihas the form

-k.r, .4 ,

UPS = - (21 + I) -•)' 0 Ap (o,O)-O (7.5)
IN•
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where Aps(o,0) is a s.attering coefficient for converted P -4 S waves. Similarly, for the incident

plane S wave (4.24) the converted far field can be derived from (C.3)

U., Lo s - -, -hrp-i c4 2. +P;cos0)f = As ,0,) f (7.6)

with the scattering coefficient Asp(w,0,*) . Now for the case of a homogeneous inclusion it follows

from the solutions listed in Appendix A that

a?' = 71(1 + 1)b, (7.7)

Using (7.7) in (7.5) and (7.6) we have the relation

Asp 4( ,#) = - y2,co -A,5 (ce) (7.8)

Thus, in the far field the scaltering coefficient; of the converted waves have the same functional depen-

dence on fiequency (o and angle 6 . For the case of an incident P wave the problem has axial sym-

metry so As has no dependence upon , but this is not true of As,.

Aki (1V)2) arrives at a result-; similar to (7.4) and (7.8) using a more general approach involving

the reciprocal theorem. lie comsidered only the case where the polarization of the P and S waves was

in the same plane (ý = 0). and thus obtained an equation similar to (7.8) without the cos, term. Conse-

quently, because the average value of cos2* i6 1/2. his equalion for the squared amplitudes does not

contain the factor of 2 found in (7.4). The approach of Aki (1992) is extended in Appendix D to con-

sider polarized S waves and it is shown that general reciprocal relations can be established in the far

field for an arbitrary localized scalterer. Hlowever, it appears that results such as (7.8), which involve

total amplitudes of the P and S waves incident from the same direction, can only be established for

scatterers with a high degree of symmetry.

5. Hamogeneous sphere

The results that have been presenied up to this point arm valid f(w any inclusion that has spherical

symmetry. To proxcd further requires that solutions be obtained for the canonical scattering

coefficients, and in order ito do this it is necessary to spccify the internal structure of the inclusion.

Here we consider the spcial case where the material pr)petnies of the inclusion are independent of the

radial coordinate, in which case it is possible to obtain analytical st)lutions fog the canonical scaltering

coefficients.

The scattering of plane P waves by a homogeneous sphere was treated in our previous papers

(Korneev and Johnson. 1992a, 1')93b) where detailed interpretations of the scattered fields wae

16



preiented. That set of solutions has been expanded to include the scattering of S waves and the com-

plee set of canonical sattering coefficients for a homogeneots spherical inclusion is given in Appendix

A. In addition to the elastic inclusion, fimnulas are also given for the specia cases of a fluid inclusion

and an empty cavity.

Consider the solutions given in Appendix A in the limit of low frequency. Then the mnst

significant scattering coefficicnt, are given by the asymptotic expressions

Si•-,.,.30-•)+ 1,1 - P2,

= 6 1 3 (8.1)
6 I (••,,+ PI,) + P2,
2 2

-PP b- (.' )T; L 9 tP'4 - J (8.2)

= 'k - I) , .' = - - -- ] (8.4)

.45 [p2 ID4 1 p2_

SP L •- = . ," (8.5)a, w ý2 IP2 jD

""• 4 5 - 2" D, 15 P 2 .v4 5 4 ti-- + (9.-5 )

C, = - [L - I . --V = ' eP, (8.6)
4 5 p2J2 45 4p2 + pj

where

=k,1,e R n = ke R(8.7)

V, D = 1+ 2 il 1(3+ 2? 892=v, •, it . • (8.8)

The coefficient,; cs and c•v are obviously much smaller than the others and may be neglected at low

frequencies. The catC of a fluid inclusion is easily obtained from (8.1)-(8.5) by putting p, = 0. The

coefficients (8.1)48.5) may dlwo be considered for the caws of intrinsic attenuation inside the inclusion

by assuming that the eliasic iwaiuneters A., amd p, Wive complex values. In this case the coefficients for

I = I depend only upon the density contrast of the inclusion, whe(eas the other coefficient% in the limit

of large intrinsic allenualion go to the vldues

aPS = 3 u = (8.9)

p p 13 3 + 2y (89)
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a = -i24---'--- Y = i___ (8.10)

3 + 2y , -

These fonmula.w rn.rest the case of a small abhmbing inclusion which capures all of ft energy which

crohses its boundary.

It is convenient to describe tbe energy scattered by a homogeneous spterical inclu.on with a

non-dimensuiaa normalized scattering cromn section. Dividing the a from (6.1) by the am of the

geometrical shadow, we have

= R--= (8.11)

For an incident P wave in the low-frequency limit we have

3 2

r=p1 + (I =., 48'4k -P+ 16 P(8.12

9 3 3 4 pt2D

+J + 4 1 i-*2- 1

27 p2 5 2 Pt2 J

- • L - I](Y' +2)+ 29+)j5 1 A } (8.13)

For the low-cntrastq ca.e, where

4 2l I+ 1-]2I + I " 1 P?-_P212(2f _, (8.12)
4_= " <I = 07 1, + CO = (8.14)

the expresion; (8.T12) and (8. 13) can e simplified tox 1,1 2 P P
1 4= 2{1 

38t.' j2 + J[ý)+2' + 1I2h }
2 -?, ~~~18 , P [f7



= •• • x 2 + ++.l]2÷}(8.15)

and

4 2{( 2+ 2 22

= ] _ _.} (8.16)

For the scalar low-contrast case the nonralized scattering cross-section may be described by the

simple formula (Van der llubaL, 1957)

4 . 4O =2 -- Simi + 0 (- costi) (.

where

a = 12 ! (8.18)

and where the WV') are chosen as either VPi" or Yv., according to the nature of the incident wave. This

result can be explained by the interference of the incident and refracted waves Propagating in the for-

ward direction, where the parauneter i is just the phase difference between these two waves in the far

field. Moruchnik (1983a, 1983b) derived this s.ame expression for the low-contrast elastic cawe. More

recently (Korneev and Johnson, 1993h) compared this result with the exact solution for an incident

plane P wave and found g(oo agreement for contrasts of about 40%, except at very klw frequencies.

It is clear that formula (8.17) Ls asymptotic to the value 2 in the high-frequency limit. This is the

result of the manner in which the problem was fimnulated, whereby, as mentioned in section 5, the

secondary diffracled field contlains both the scattered waves and any modifications of the primary

incident wave. For the perfectly absorbing sphere, in which case there will not be any waves that are

actually scattered, the secoidary field UV,. must have a vdue sufficient to cancel the incident wave in

the shadow and the normalized scaltering Lcoss-sec'ion will have an asymptotic value of i.
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9. Low--tvqency scatterd fiekld

Expressions (8.1)-(8.5) for the cmouical scwattering coefficienLt of a homogeneous eliamic spere

may be u•ed to obtain klw-Ir-N.uency asymptotics ir the scattered field (4.21). Thus, for the incident P

wave (4.22) we have the fir field isymptotic solution
U, = UP + U(91)

Up = A4 -2- I..--•'+--1 .t + ( - L cosO + - (-•3sm 2e)F (9.2)

u. ] sin + I I- sin2 (9.3)

and for the incident S wave (4.24) the far field mLsylnptolic .solution h•s the form

U.5 =U, + U., (9.4)

= A { sinG - L - I I sin2 OJco,4 F (9.5)

=s B I iJCOSO - 1,- I I cos2O cosO

P2 D

+ B P{ I + C( - ( cos4•inoi (9.6)

where the following notation haL becn used

-ik r -ikr
,- = ipR 4_L e 4= 3  (9.7)

4n r 4n r 3

The mse of a low conItst between ithe malerial propniries of the inclusion and the sumrunding

material (Born approxination) i% defined by the conditions

1-C. I, ci= Ii-pIl -= I pA l =2-p1 <C 1 (9.8)

p P•2 P P2

and then the expressions (9.1)-(9.6) become the s.une ms those obtained by Gubernalis et al. (1977a,

1977b). For an incident P wave these aur

up = A 8p + COS f (9.9)

Usf = B {.8PA2. sinG + TLsiu2 O} (9.10)
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and for an incident S wave they arc

Us= A { k-sine - y.-8 Sin20} ,.'4 Fp(9.11)

os--cos2 co.s + B - + A--co0}sin# (9.12)

10. Numerical results

In order to illustrate some of the properties of the solutions derived in this paper, numerical cal.

culations were perfonned for a few sample problems involving a hxwnomenetus spherical inclusion. For

the first set of eximnples the imtierial properties of the surrounding medium were chosen to be represen-

tative of a typical continental crust:

VP() = 6.0 kin/s. , V,(2) = 3.5 kin/s . P2 = 2.7 g/ 3i,

Five different models were used for the inclusion, with the properties chosen to represent a variety of

different types of obstacles that might be encountered in the earth. The elastic pauameters for these five

modeLs are as follows:

model I - VI' = 7.5 lin/. I V(') = 4.4 bn/.s , p, = 3.1 g/cm3 ,

rnodel 2 - VI' = 4.5 kinIs , VS") = 2.6 "kin/s , P, = 2.3 g/cm3 ,

rmodel 3 - V,,"' = 3.4 kin/s , Vt = 0.0 kins , p, = 2.7 glcn3,

model 4 - VIP) = 1.4 kins , V'O) = 0.0 "lIn s , p, = 1.0 glcm 3 ,

model 5 - VP1 = 0.0 kwlIs , V,(') = 0.0 ,n/s , P, = 0.0 glcm3 ,

For each of these models the sc•atering problem was solved for an incident plane P wave and also for

an incident plane S wave. The results ofI the calculations are presented by plotting the normalized

scattering cross-sections Ck and cY9 as a function of the parameter 4 = •2 = (R/V(2).

Models I and 2 simulatc high-velocity and low-velocily inclusions, respectively, with the

difference in material properies being about 20% in each case. Figures 1 (model i) and 2 (model 2)

present the normalized cross sections for these Iwo types of inclusions. The general pattern of the total

scattered field in these cross sections is described by an increase as 04 at low frequencies which merges

into long large oscillations about a constant value of 2.0 at higher frequencies. Tbese long oscillations

are caused by the interference between the waves that propagate through the inclusion and thMse that

pmpagate around it (Van der Ilulst, 1957), and the asymptotic value of 2.0, as discussed earlier, result%
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from the fact that the scatt•rcd field ci,...Uins both the waves scattered by the inclusion and the distur-

bance of the primary field. Superimposed on this pattern, particularly evident in Figure 2, are some

short small amplitude oscillations caused by multiple reflections within the inclusion. Because the

low-velocity inclusion tends to f:ocus energy within the othstacle much more than the high-velocity

inclusion, these short oscillations are much more prnmmunced for the low-velocity inclusion.

Of particular interes: in Figures I and 2 is the cotnparism of the scattering cros, sections for

incident P waves anid S waves at low fretquencies where the wavelengths are larger than the size of the

scatterer. In this frequency range the P -+ S scattcring is much stronger than the S --* P scattering, in

agreement with the results derived in section 7. For an incident P wave the energy scattered into the S

field can exceed that scattered into the P field, whereas in the case of the incident S wave the amount

of energy scattered into the 13 field is negligible compared to that scattered into the S field.

Models 3 and 4 are fluid inclusions, with model 3 simulating an inclusion of molten rock and

model 4 simulating an inclusion filled with water. The scattering cros sections for these fluid inclu-

siots am plotted in 1-igures 3 and 4 and show a ixttern similar to that of the elastic inclusions except

that all of the features arn shifted toward lower frequencies. Because of this, the scattering reaches

significant levels at rather low frcquencies where the size of the inclusion is still much smaller than the

wavelength of the incident wave. The ob.ervation made for the elastic inclusions that the P --* S

scattering is much stronger than the S -- P sc:attering is even more pronounced fror the fluid inclusions.

with the scattered S field dominating the scaltered P field at low frequencies regardless of whether the

incident field is a P wave or S wave. In addition, for the case of the incident P wave the scattered S

field is now comparable to the scattered P field over the entire frequency range.

For the case of the waiter tilled inclusion (Figure 4) the resonant features of the scattering cross

sections are particularly conspicuous. '1ie positions of the resonance peaks correspond to the real parts

of the complex rx)ts of the determinant (A.9) contained in the denominator of the canonical scattering

coefficient-;. Some of thc.s roo)ts (including the first one) may he obtained by letting I = I in (A.9),

which leads to the equation

J2(t)d 0 , =Vi l (10.1)

The first few rxots of this equation are 41 = 2.1 , 5.9 , 9.2.

In model 5 the inclusion is a hollow cavity and the scattering crosx sections are shown in Figure

5. It is useful to think of this maodel as a mnodificaition of the water-filled inclusion of model 4 in which

V(1) and Pi are reduced it) zero. This helps explain why the scattering cross sections of Figure 5 wge
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essentially smoothed versions of those in Figure 4, with the main differences being related to the fact

that the cavity has no reso)nances associated with the scattered field within the inclusion. The fact that

the general patterns of the scatllering cross sections in Figures 4 and 5 are similar indicates that this pat-

tern is controlled primarily by the vanishing of the shear modulus within the inclusion.

It is worth pointing out that the properties of the material surrounding the inclusion and

wavelengthsL of the incident waves are identical in the Figures 1-5. However, is is clear that the com-

mon features of the scattering cross sections are found at rather different frequencies for the different

types of inclusions. This result can be explained if one describes the frequency dependence of the

scattering cross sections in terms of the wavelength of the scattered field rather than the wavelength of

the incident wave. Note that in applying this reasoning, the wavelengths of the scattered fields both

inside and outside the inclusion must be considered. This general principle explains why the scattering

cross sections of the S field is always shifted toward lower frequencies with respect to those of the P

field (compare the upper and lower pauels in Figures 1, 2. and 3). why low-velocity inclusions have

scattering cross sections that are shifted toward low frequencies with respect to those of high-velocity

inclusions (compare Figures 1, 2, 3, 4, and 5), and why the positK)n of the resonance peaks in the

scattering cross sections depceid upon the velocity within the inclusion (compare Figures 3 and 4).

This saime type of reasoning about the wavelength of the scattered field als. helps; explain the

general result that the P --+ S scattering is stronger than the S -- P scattering at low frequencies.

From section 9 it is clear that the low-frequency scattering energy is proportional to (Rlwavelengih)4.

Such a result favors the scattering of S waves because of their shorter wavelength. Another way of say-

ing this is that, using the scale of wavelengths, an inclusion appears larger to an S wave than to a P

wave and thus it is scattered snore intensively. What is not so obvious is that the ratio in the scattering

intensities for the converted waves should be independent of frequency and proportional to the squared

ratio of the velocities. I I vever, it is clear in Figures I - 5 that the shape of (NPs curve Ls always ident-

ical to the corresponding 41P curve, with the aunplitudes of the curves scaled according to (7.1).

In Section 8 it w1L, pointed out that the case of an inclusion with intrinsic attenuation can be

treated by a.ssigning complex values to the elastic parimeters within the inclusion. Examples of the

normalized scattering cross sections for this type of an inclusion are shown in Figures 6 and 7. The

attenuation wits charactcrivAed in terms of the quality factor Q, where

L)' = nX (10.1)

R{Rel,} Re~p1 )

The caiculations were performned for the low frequency case where k,,R = 0.05 and the figures show
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how the cross section changes as the alltiuati(on of the inclusion is increased. Rgure 6 shows the

results for the high-velocity inclusion listed earlier as model 1, and Figure 7 is for the low-velocity

inclusion of model 2. The results are quilte similar for the two types of inclusions. For small attenua-

tion the scattering cros. sections are just the low 1requency values shown in Figures I and 2. As the

attenuation is increased the scattering cross sections also incrtne and approach the limiting values asso-

ciated with the coefficients given in (8.9) and (8.10). The attenuation affect- the scattered S waves

much more than the scattered P waves, as the scattering cross sections for the incident S wave reaches

values which are about 3 times those for the incident P wave. Furthermore, for both cases of an

incident P wave and an incident S wave the scattered field consists almost entirely of S waves.

The basic solutions presented in this paper are completely general in that they can be applied

over the entire freiquency range and to all inclusion of any size. For instance, the scattering cross sec-

tions of Figure 3 can be used to provide a rough estimate of scattering by the earth's fluid core. More

appropriate results can be obtained by choosing the following material propernies to represent the earth's

mantle and outer core:

V12) = 11.3 kin Is V,(2) = 6.2 kin/s , P2 = 5.0 gm/icm 3

VIP) = 9.9 ki Is , V,90I = 0.0 km Is , pI = 6.0 gin Icm 3

These velocities were chosen to match thle average travel times through the mantle and core, and the

densities were chosen to match the contrtsl in acoustic impedance at the mantle-core boundary. The

radius of the core was taken as 3482 kin. For this example it is instructive to consider the complete

solutions to the scattering problem in the time domain. The expansion coeflficients for the incident field

of (4.14) were chosen to represent a point pressure source at a radius of 6300 kmn, and then the scat-

tered field of (4.21) was evaluated and transfonned from the frequency domain to the time domain.

(Korneev and Johnson (1993a) show how the solution for a point source is easily obtained from the

plane wave solulions.) The spectrum of the pressure at the source was flat below a corner frequency

corresponding to a period of' 30 sec. The total solutions, including both the incident and scattered

fields, are shown in Figure 8 at 6-degree angular intervals for a radius of 6371 km. Note that this is an

example of high-frequency scattering, aLs k,, R has a value of 730.

There are a variety of interesting f'alures on die seismograms of Figure 8, but the discussion here

will concentrate primarily upon soime of the diffraction eff'ects. A good example of this is the arrivals

that fill in the gap between the PcS and PKS phases. The geometrical ray arrivals for the PcS wave

end at a distance of 72 degrees and those of the PKS wave begin at 122 degrees, but in Figure 8 this

gap is completely filled by diffracted waves. Another example is the P2KS phase which ends with a
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caustic at a distance of 175 degrees, but strong diffracted waves extend out to 180 degrees and back to

less than 150 degrees where they merge with the PKS phase. The situation is actually more caimpli.

cated than this. as the P3KS geometrical arrival extends out to 115 degrees and then is continued by

diffracted waves that merge with the P2KS wave near 180 degrees, while the P4KS geometrical arrival

extends to 55 degrees and is continued by diffracted waves near 100 degrees. Thus the waves P4KS,

P3KS. P2KS. PKS aud PcS along with their diffractions all come together to form a complex and con-

tinuous group of waves that appear on these s.ismognrns between a distance of 60 degrees and time of

2300 seconds, extend out to 180 degrees and 1600 econds, and then continue back to a distance of 0

degrees and 700 seconds. Increasing the amplitude of the seismograms would allow this same type of

pattern to be extended to include the P5KS wave and other higher order core waves of this family. The

same type of phenomenon also occurs for the PKP aunily of waves, although these waves are of

slightly lower amplitude thain the PKS waves arid thus not as easily observed in Figure 8.

The distances mentioned above for the regions of geometrical arrivals and diffracted waves will

be slightly different in the real earth because of tie radial variation in velocity in the mantle and core.

The seismograms will also be considerably more complicated because of the additional waves caused

by the inner core, the surface of the carth, and S waves generated at the source in the case of earth-

quakes. However, the relative anplitudes of the the different waves, the distortions in the waveformrs,

and the interaction between the geometrical and diffracted arrivals shown in Figure 8 should be gen-

erally applicable to long period waves in the earth.

There is one other feature present in Figure 8 which is worlh mentioning. On the radial com-

ponent at a disuutce of 180 degrees and at a time of about 2_500 sec there is just discernible a long

period wave (period of about 6(X) wec). This is an interlface wave of the Stonely or Scholte type which

travels on the mantle-core boundary with a velocity of about 4.4 km/sec.

11. Discussion and conclusionrs

The primary purpose of this paper is to present in a convenient form the exact solutions ftr the

scattering of P waves and S waves by a spherical inclusion and to point out some of the impoirant pro-

perties of this solution. Hlowever, it is also worth considering whether these results can be used to

make some general inferences about the scattering of elastic waves in the earuth. In doing this the first

point which must be discussed is the applicability of results for a spherical inclusion to the situation in

the earth where the shape of the inclusion is often unknown, but most likely different from that of an

exact sphere. I lere one can appeal to the fact that scattering by a sphere represents a canonical problem
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ftr a mor extended chlas of objects with reltlively simple and smooth boundaries, and thus rea.,miat

these results should apply in ai approxinate anuincr t) a wide class of object-; having these propolq es.

In the low-frequency range (Rayleigh scallering) an even stronger argument Ls possible, as it was shown

in section 9 that for this case the s.lutions depend only upon the volume of the inclusion and not upon

its shape. Thus the low frequency results presented in this paper should he applicable to small 3D

inclusions of any ,thpe in dte earth.

In the low-frequency range there is a strong asymmetry in the relative scattering of P waves and

S waves. The P -- S scattering is generally much more intensive than the S -+ P scattering. This is

explained in a qualiuttive sctse by the fact that the inclusion appears to be larger to the S wave because

of its shorter wavelength, and the faIct that the scattering is controlled by the wavelength of the scat-

tered wave rather theii the wavelength of the incident wave. It 6s common for an incident P wave to

have more energy in the scattered S field than the s..attered P field, whereas for an incident S wave

almost all of the scattered energy is in the S field. This suggests that the coda of P waves should con-

tain a significant proportion of S waves, while the coda of S waves should be predominamtly S waves.

This asymmetry in the scattering conversion of P and S waves n-m be quantified for the case of

the spherically symmetric sca.ittcrers considered in this paper. It was shown in section 7 that the mean

intensity of the P -- S converted waves is 2V IV,4 times the mean intensity of the S -+ P converted

waves, and this ratio is independent of frequency. For more general scar,":rers it is possible to write

reciprocal relations such as those given in Appendix I), but it is not obvious how these can be con-

vecrtd to intensity ratios such as.L that just given for a spherical scatterer. Hlowever, at low frequencies

in the domain of Rayleigh scatltering where only the volume of the inclusion is important, it is conjec-

tured that the ratio of the mneau intensities of the converted waves will approach the value obtained for

spherical scalterers. Thus this strong asymmetry in the %cattering conversion of P and S waves is likely

to be a general result when the wavelengths are largc compared it) the size of the inclusion.

The scattering from a fluid inclusion is more intensive than the scattering fnrm an elastic inclu-

siom, with the general frequency dependence of the scattering being controlled by the contrast in the

.sear modulus. Superimpos)ed upoui this frequency dependence is a series of resonance peaks which are

controlled by commpressional velocity of the fluid. 'Ih'ere exists the potential here to use the spectrum of

the scattered waves to estimite the dimensions of the scattterers, although the case where there is a dis-

tribution in the size of the scalteremr would tend to smoxth out the resonance peaks. Regardless, the

amount of energy scattered into the S field by an incident P wave is an effective diagnostic which can

be used over the entire freqtucncy range to identify fluid inclusions.
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In the case of a low contrast between the material properties of the inclusion and the Surrounding

medium only a few of the scattering coefficients need he included in the low-frequency range and they

have a simple dependence upon the material properties (equations (8.1)-(8.5)). The form of these

cocfficients is suitable lbr use in inverse problems, with Some of the coefficicnts depending primarily

upon the contrast in density, others depending primarily upon the contrast in shear modulus, and others

depending upon the cmnLrast in compressibility.

One feature of the low-contrast approximation, a.s is true of most Born-type approximations, is

that it does not satisfy conservation of energy. However, this is easily remedied. The equations (5.8)-

(5.10) are derived from (5.2) and are essentially statements of conservation of energy. The right-hand

sides of these equations, which involve only the real parts of the canonical scattering coefficients

represent the energy terms that are coherent with the primary field and thus account fiw the change in

energy of the primary ficld tiat must occur when additionial scattered fields are generated. Applying

this to the low-contrast case, we note that the coefficients (8.1)-(8.6) are completely imaginary and

represent only the scattered fields, tie rcad parts which represent the change in the primary field having

been dropped in the approximation. IHowever, these real parts can he recovered from the expressions

(5.8)-(5.10), and including the real parts will restore the conservation of energy. Note thai because the

coefficients (8.1)-(8.6) all have an (W)3 frequency dependence, the real parts of these coefficient. will

have an ((o) 6 frequency dependence, which in most cases will make them small enough to be neglected.

However, in some situations, such is studies of attenuation of primary waves due to scattering, these

real parts of the scattering coeflicients should be included in order to achieve a formulation more com-

patible with energy conservation.

A caveat involving intrinsic attenuation should be mentioned here. As mentioned in Section 8,

the canonical Scattering coefficients can he mtodilied to include intrinsic attenuation by introducing com-

plex elastic panuneters. IHowever, in this case sotne of the relations, including (5.8)-(5.11), are no

longer valid because strain energy is no lotger conserved. The analysis of the low-contrast approxima-

tion is still polssiblC, IM, introducing counplex clistic parameters into (8.1)-(8.6) produces real parts of

these coefficients which are proportional to (W)3 and which cause an attenuation of the primary field

due to the intrinsic allenuation which dominates that due to the scattering.

27



Apliondix A

Consider the emse of a homnogeteous elmstic sphere of mdius% R with elastic pr~utaemr )LI PA1 MW

density p, surrounded by a inediuan having elasic pwarncters X2, p2 and density P2 with the cdntiu-

ous Ixoundary conditions (4.17). The cmuumfiel xcateienug coefficients have the folowing analytical

repre~sentat ions.

ai1  Ap , "P I)/'P = - - . 11M A (A. 1)
A I AA

.jj-(lIj(j)- 11jj,(T1I)i,-,(T12) + (1+2) 1 - -J~LP~Ir 2
=1 - 21 (A.2)

PI TJI-11IM112)- TrJ,1(r))h,..,(1 2) + (14.2)[1 - Iit( O,02

where

(11.A2)3  r h,(42) h,(013) (2+IA ~ i ftl,) J (21 +1)A

21 +( )2 f)2 A k) II P2,

- (1 +1)P, rh, (44 j, (TI1) A2+j,(41) hiOb) 1-
- (1 1-V 1 1" TI, 1 A4 2  ]

- q A, [A 2 + VI + 2)/,,.,(E 2)h,,,(Tl2) + (I - h42h-02

+ P qA2A, + (1+2)j,+I(E4,)j,+,(Tjj) + (-)ItEiJ..irtj+ q2(1-IX/+2)A,&A2  (A.3)

APS= + 12 -q (1-1 )(14-2)q-1 - AI - 71 PI 1-L--(1+2(2/+1)q]

+ q-i [2j,+ 1(41) -LT! + j,,,(ijI) -(AA4)

P21 i I J

Asp =Y?1(1 + I)AP.V (A.5)

An expression for Ap cmr N; derived fromn WA) by substituting ftr the functions

hk (42) Rk = 1-1,/,/ +I) (lie corresponiding *unctiotIIS -A~(42). Analogously, At can be derived fromn dhe

same expression by substituting for the functions 40&12) (k -,111 the corresponing functitms

-jk ('12). The following definitions have heen used in equations (A2)-(A5).

Al 0 ( + 1) j1A)1IT1 + / if-A1( 1)j+,1 1)
A&2 =(1 + 1) hj,4)jIT2 + I h,,I(k2)Ii,~,(i 2)
AI2 =(I + 1) j,,,(4,)h,.,(Tj2) + I jh-I~k)h,+1 (112) (A.6)

A21 ( + 1) Iij+I(42)ji-a(ThI) + I h,-,(t2)j,+,(Thj)
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1 2i. 2 V,(2)

q T, Y2 ".4 (.Th=-, P2p

(OVjR , L+p V ( = T(A741 V (1) VJh 2  = tS I Pi 'PI

For the- case of a fluid within the sphere (p, = 0), the above expressions reduce to

(1+2)j,(T12) -,h-(T2

2/+
A uI 2 21 (21 + 1a() h, /t(TI ) [+(Al) - l

- (21 + 1) Llý ,M)11(k)-- ,(1
P2 41 1h4

_2 +4)- .-L j,~l A-, + (I + 2)h,+1(-2)hm+(T1 2) + (I Oh-4M-02

TI2 [i 14
+ 2 P [2ji+1(4) 21-I ji(; 1) + 43-~(I-lX1+2)A 2  +0 1it( (A.9)

T12 P241T24

____ ,I ~ ji(d PI
21/+ 1 41  P2

A = y.'/(1 + l)A,. (A. 11)

Exprissions fmr App, and fkr A.,, can be derived fromn A in the same way as in the elastic case.

For the case of a cavity the above expressios can be further simplified to

C15 (I+2)j,(TI,) - qbi,-~10i,) (A. 12)
C1  (1+2)Is,(Tq2) - q~,101i/i..2)

A T2;3f h( 2  4(1-1 )(1 +2)A,
1242 /1 (n ) (21 + 1W,-?

r 22

A,,5 = 2i-L- 27 -(/I4 )(I+2)iJ (A.14)
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AP= Y'(I+ l)APS (A. 15)

ExprcMims forAPP and forAss can he derived lrcn A indte awwe maima as inthe pmvkouaca~s.

Appendix 8

The dilirueted field in~side a bomogeneous% elatic sphere may be calculated using fte expreasskn

(4.21), where all of the spherical Ilankel funciions hk are replaced by sphefical Bessel functicui Ik md

where fte wavenuintiers k., and &-, are taken for the inner medium v I . The canonical sctefilg

coefficient% (or the inner medium have the Iornn

0Ah(T A( (B.2)

with

APP -I-- I -I -- (1+2)(2 1 +1)q -~a + (1(1+2)q-1) fi-I(Ta)]

+h,1(T12) r 11+) r ji j(T,) )10 1 (B.3)

I-21+1 2X2/+ P2 ý + (1+2)(1

+ h,..,(Ti2) q [(1+2) Ž~! ~ }(BA4)
A 1(0+1) 4f(+I, 1.), 1 T)l-)4( 2 i,(~)[

(21 + 1)2 2 fL 2~

I I PT j

= 1~~~jA(I) h,() P
Ass i- (/I+X21+ l)ij;r- I I-I-(21+1i, (1f -4 L Ih-4VA(21+W) 41 4- P21 J21, 2

where the, expression (or A is given by (A.3) and the notation (A.6) has been used.
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For the casc of a fluid within tie. Vphew. the: abovte xpressions cm be reduced to

Ct (B.7)

am5  0 (0.9)

(21( + 1) 1h (

Am 0 (B.l11)

wher fth exprewmims for A is given by (A.9).

Appendix C

Rwr the case ol'the. incidemt pkrne P wave (4.22) the- scaftered field in the outer nmxdiwn bas- the

foan

U.= U,,+ j.ý +A I k r ) + lbt"hi ,,I(k. r ]0

+ bP (+1)h k r){aP[(~)(D 1 .ak) P, (cos 0 F+)91k - h, k ) 1j(cos r) P (Cos 1)*1
11,, kr rJrI m a1

For the c~ss ofr tx- incide-nt plan S wave (4.24) the scattered fick! in the outcr medimn bar. the

.- = ups~ + Lk = {((h(INrY [b.1: af'h,,I(k,.r) + lIjbjsh,2,bfh(k, r] U~

+ [- h.u j-i,(.r) + (1.l)b/''L.'bthud(kir )] Y&; (C.2)

in cim;i of the spherical vctlors- (3.1). anxd

Uwc=UflV + U.V~
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" (2 + 1) P( kr -. r)-1~ S1( + _i) (

fitIr I I'

+cnt oeO4lkr + ia, h,(lO ) r r
" cm#[iSQj(~h (. +0iý Q2(()O jk) + bfsQ2((9)1 hl~k) -(k~r)J

"+ sin#r4 2(0)h1 (k r) + WaIT Q M hi (k,. 0) + .rQ()h, (k.r) 11,(~ (C.3
LCS k. r + b~I 1k, r 1.IkrJ JC3

in a spherical crdinate system, where

b•= 21(I+I) I[I(+I)6","-""-'''

-bo = a .. )

21+1
= 2101+01)i(1+lm + 5

g

QI(0) = P1"-. (cos8) + I(I + I)P/1% (Cos) , Q2(9) 1(1 + 1)PI1(cos) - P1
2(cosB)

Appendix D

The purlse of this qqwndix is to extend the analysis of Aki (1982) to the cae of P and S waves

having arbitrary pokluizations. Consider a l•mdlized scatterer with a spherical coordinate system cen-

tered upom it. At the pxint (r,. 1,#,) is located the unit radial force

fp(r,Oj,#j) = f (D.1)

The scattered S wave genemted by this fIrce and observed at a second location (r0,02.) is

ups (r,&.,) = up$(r,,) + u,52(r, 2 .) j (D.2)

= up%(rV. 24,) {(cos (M2) 0 + .Tin (02) i))

where q2 & the piolarization angle of the S wave at the second location. It has been assumed here that

the diWance r Ls sufliciently large so that only far field plrts of the solution need be included. At this

second locatmon two •spmoate forces are considcred. The lirst is the unit transverse force

f5 1(r,9,4) = 9 (D.3)

At the first location (r0.0,#) this gives rise io a sca•lercd P wave with displacement

us= ujp1p(r9,0,*) = (D.4)

The reciprocal there'M states that

fp (r•01 .#,) I ,p k(r .9 1 .) = ups(r.••.)" ,,#(r. 00 2 ) (D.5)
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and in the present case, using (D.1-D.4), this means that

u31,(r,.,.# ) = upsj(r.O2.#) (D.6)

The second f(wce to be conxsidered L the unit transvcrse tirce

fs2(r, 2,#) = j (D.7)

which produces a P wave at the first location with displacement

u,2p(re,#,$) = u 12P(r9.0,*,) t (D.8)

Applying the reciprocal theorem in this case yields

us2,(rOI,#*) = uas2(rO2 ,). (D.9)

The two expres.ions (D.6) and (1.9) are the reciprocal relations for two orthogonal polarizatioLs of the

S wave. In general both polarizations will he present in a scattered P wave and thus both reciprocal

relations are required.

In the vicinity of the scallerer the ;unplitude of the P wave incident from the first klcation will be

UO-4itp IVf'r

and that of both S waves incident fIhin the second localion will be

= 4xp VIr

Thus (D.6) can he written in terms of mnplilude ratios as

_,p(re,.,,) V*y upsI(r O.4.h) (D.10)

and (D.9) beLnoes

u52p(r.e1.*,) v] up.v(r , (D .11)
40 VlllUP

These are exact relationships f•r the two polarizations of the S wave and they show that in each case

the P -* S scattering is stronger than the S -+ P scattering by a factor of (VI/VS) 2. The result (D.10)

with 4H = 4 = 0 is essentially that derived by Aki (1992). While these results ame very general, they

are not entirely suited to the scattering problem. First, they deal only with the separate compnoenst of

the motion and cannot he convented to equivalent expressions involving the total amplitude of the

motion unless the polarizatkm angle of up.,, is determined. Gubernatis et al. (1977, 1979) have given
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Seneral formulas ftir the Car field scattered P mid S waves and specific formula% for a few special cases

of hoam)geinous inclusions which can be used to determine this lplarization angle, but the results ame

am particularly simple. The .Lcto)Id pnrolcm with the-e reciprocal relalions is thai they involve P

waves and S waves incidenlt lromn dif•erent directionis, and the geometry of most interest in scattering

problems involves P and S waves incident i'onm the same direction.

The reciprocal relationships (D.10) and (D.11) can be further simplified in the case of symmetri-

cal scalterers. In the case where the scattering object possesses cylindrical symmetry about tie (0, #,)

directmion, the polarization angle of up5, is given by

.nsin (el).in ("J-4')
sin ((a)) )

where

cos (8) -€. (92koN( i) + sin (8,)sin(1 )cos (t-i)

For an object with spheric;d symmetry this result holds )r all directions and, furthermore, the two posi-

tions (01,ý) and (U2,,) cmui be freely interchinged. To duplicate the problem considered in this paper,

let the P wave be incident from (01 =n.ý = 0) and then

up.5(r*,O$) = up.v I(r,.,) 9 = - up..(r.O.$)

Also let the S wave be incident from this %kune direction (02 = 7,• -= 0) and without loss of generality

take fS2 = 0. Then use ().6) and the spherical symnetry to write

tse(r.,e) =u .r )

= COs (0) up.v (r,x,O)

= c'o.r'($) us/,p(rO,.$)

Subsituting these results into (D). 10) yields

usp (r,O,8) V2  up. (r,O.0)u•) = -- V-• £'••"(0) u (D. 12)

This result is more applicable to the scattering problem as it involves the tolal amplitude of the P and S

waves and both the incident 11 wave uid the incident S wave arrive along the same direction. It is

identical to (7.8) which w;as obt;.ncd 1roin the exact far field solution for a homogeneous spherical

scatterer. Note that the angle 0 in this result is just the angle between the polarization vector of the P

wave and the plane containing the po)lrui•aliota vector of the S wave and the scatterer.
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Figure 1 Normalized scattering cross sections for an elastic homogeneous sphere as a function of the

parameter kR = (aR IV,. These results are for the high-velocity inclusion which Ls listed as model I in

the text. The top two panels are for the case of an incident P wave, while the btxtom two paneL, are

for an incident S wave. The panels on the right are expanded versions of those on the left for small

values of the argument. Tie dashed line relresents the energy scattered as P waves, the dotted line

represents the energy scattered a S waves, and the solid line repyesents the totaJ scattered energy.
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Figure 2 Similar to Figure I for the low-velocity inclusion which ks listed as model 2 in the text.
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Figure 3 Similar to Figure I for the flud inclusion which is listed as model 3 in the teXL
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Figure 4 Similar to Figure I for fth fluid inclusion which is listed as model 4 in the text.
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Figure S Similar to Figure 1 for the cavity inclusion which is listed as model 5 in the text.
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Figure 6 Normalized scattering cross sections for an anelastic homogeneous sphere as a function of the

attenuation quality factor Q-1 of the ,phere. These results are for the high-velocity inclusion which is

listed as model I in the text with the elastic constant-; within the sphere modified to have complex

values. The frequency is constant with kpR = oaRIV, = 0.05. The top two panels are for the case of

an incident P wave, while the bottom two panels are for an incident S wave. The panels om the right

are expanded versions of tUmse tm the left for small values of the argument. The dashed line

represents the energy scattered as P waves, the dotled line represents the energy scmtered as S waves,

and the solid line represwLs the total scattered energy.
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Figure 7 Similar to Figure 6 for the low-ve~lciy inclusio which ib listed &% niodl 2 in the text.
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